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A formulation of the mathematical problem of equilibrium is given for a defor- 
mable solid whose elastic and plastic characteristics are functions of the coordi- 

nates. Extraction of the nonlinear terms and terms taking account of the devia- 
tion of the elastic moduli from some constant values results in the method of 
linear successive approximations, which is analogous to the method of elastic 
solutions. A problem of linear elasticity theory for a homogeneous solid subject- 
ed to fictitious mass and surface forces governed by the preceding approximation 

is solved in each approximation. Using the apparatus of functional analysis, the 
convergence of the method in application to the first and second boundary value 
problems is proved. 

In many cases the solid and the medium are inhomogeneous relative to the 

mechanical properties. The inhomogeneity originates either during shaping of 

the material (solidification from the melt, tempering, ageing, etc.) or is the 
result of the presence of inhomogeneous temperature fields, racioactive expos- 

ure, and other physical and chemical fields. The elastic and plastic character- 
istics of the material are hence functions of the coordinates, which are introdu- 
ced either explicitly (for example, for naturally inhomogeneous media), or by 

using field functions (the exposure dose [l]. the degree of austenite transform- 
ation in tempering of steel [Z], etc.). 

1. Limiting ourselves to the class of isotropic materials, let us consider the elastic 
and plastic characteristics of a material to be functions of a number of parameters T, 
R , . . ..dependent on the coordinates 2, (m = 1, 2, 3) of the point. Let us assume 
that the functions T (x,), R (x,), . . . can be determined independently of the determ- 
ination of the stress and strain states of the solid (discrete problem), and that the proc- 
ess of the variation in the external loads, including T, R, . . . , is such that a simple 
loading holds at each point of the solid. Then, for small elastic-plastic strains the typ- 
ical problem of equilibrium of a solid is formulated as the following boundary value 
problem: It is necessary to determine 15 functions u$, Eij, (Jij satisfying the following 
relationships within the domain S, occupied by the solid 

Qj, j + Fi = 9, sij -” 2 aij 

% = ib (3,, T, R), 6 = f (8, T, I?), Eij = l/s (ui, j + uj, i) (1.1) 
and on the boundary s of the domain St 
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Ui = *f on S, 

o$j = T,f Oil SC 
(&+s,=q (I*3 

Here u = uixi is the displacement vector, I? = F,xi is the volume force vector, T, = 
TfGi is the vector of the given surface forces, 0, = (s/ssrj Sij)“z is the stress intensity, 

o = ‘/aoii is the mean stress, 3, = (s/a aij 3ij)‘lI is the intensity of small strains, 8 = 
‘/a Eii is the mean elongation, sij = Uij - O6ij is the stress deviator,afj =: aij - 
t&j is the strain deviator, T is the temperature, and 8 the exposure dose; summation 

over the twice-repeated Latin subscripts is kept in mind throughout. Without limiting 
the generality, only the two external parameters T and R are retained. 

Let us represent the functions CD and f as [l] 

Q, = 36,3,[1 -g(3,, T, R)], Q = 3K,(e-aT -qR) [I + cp(T, R)] 

g (3,, T, R) = 
3G03U - @ P,, T, R) 

3G03~ ’ cp (T, K) = 
KM;-& t1.3l 

where G = G (T, R), K = K (T, R) are the shear modulus and the volume modulus 
of elasticity of the material, G,,, KO are the same quantities for unexposed material at 
the temperature of the natural state T,, and a, q are the coefficients of linear thermal 
and radiation expansion. 

For the elastic state when U, < oS (T, R), it must be assumed that 

g(T, 4 = 
Go-G (T, RI 

G,, 

where g and cp in this case are known functions of the coordinates given implicitly in 
terms of T (r,), R (5,). 

The discrete problem of thermo-radiational plasticity under simple loading reduces 

to the determination of three functions ui (2,) which satisfy the following equilibrium 
differential equations in Q 

(K, + l/s G,) 9, i + GJ% + Fi - % (UT + M), i = 

= 260 [g (3,, T, R) ( eij - e&)1, j - 3Ko [(P (TV H) (8 - cd’ - qR)l, i (1.4) 

and the boundary conditions 

Ui = *i on S, 

(~I$’ + “‘) lj = T Qi, vi on S, (1.5) 

Here 8 = Eii is the volume expansion, and we have used the notation 

c$’ = 3Koedij + 26, (eij - e6ij) - 3K, (aT $ qR) b,j 

~1:’ = 3K,v (T, K) (e - aT - qR) 6ij + 2G,g (a,, TV R) (cij - 6) (1.6) 

Following the method of homogeneous linear approximations Cl], we have the following 
formulation of the linear thermoelasticity problem for the (n + 4) -th approximation 

(K, + ‘is Go) 9~‘~‘) + G~V’U)~+‘) $- Fi - 3K, (aT + qR), i = (1.7) 
= 2G, ig(3c'), T, A)(&‘) - E(“)dij)], j - ZK, [T (T, H) (E(lL) - aT - ql?)], i in Q 

under the boundary conditions 
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@+I) = 
ui 4% on s, 

Qij 
(e) (n+$ = 

T,i - ai?’ ‘n’Zj on 8, 
(1.8) 

where all the quantities with superscript n are calculated by means of the values of 

Uicn) from the n-th approximation. 
The method of homogeneous linear approximations [l] is the following. In the zeroth 

approximation it is assumed that g = ‘p = 0, and (1.4), (1.5) reduce to the customary 

linear problem of thermoradiational elasticity for a homogeneous solid. Let its solution 
be ui(o’ (z,). We evaluate e$’ and then 31;). If it turns out that 3;) < e, everywhere 
in S2,where eS = Es (T, I?) = fs (zm) is the limit of the elastic strains at the considered 
point of the solid, then it must be assumed that g = g (T, R) in (1.3), and we hence- 
forth deal with the problem of thermoradiational elasticity for an inhomogeneous solid. 
Hence g (T, R) and q (T, R ) are given functions of the coordinates. In this case, by sub- 
stituting the value a$j in place of sij in the right side of (1.4), and calculating 

ojlTT’ (‘) in conformity with (1.6) in terms of E$’ 9 we arrive again at a linear problem 
of thermoradiational elasticity for a homogeneous solid in a first approximation. If 
3:) > E, is some subdomain Q$J), then g(O) = g (I$), T, R) in g(O) and g(O) = g (T, R) 

outside Qi”). Using the values e&!‘I and g(O) to evaluate the right s\de of (1.4), and the 
values ~8) according to (1.6), we arrive at the problem of linear thermoradiational 
elasticity for a homogeneous solid with modified mass forces (or temperature) and sur- 

face loads. 

2, Let us prove the convergence of the method of successive approximations for the 
first and second fundamental boundary value problems just as is done in [3] for isother- 

mal plasticity problems. 
Let us consider the space c, of vector functions v (z) defined in a volume D= Q 3 

8, which are twice continuously differentiable and satisfy the condition v = 0 on 

the surface S-In this space let it be given the scalar product and the norm by the form- 

ulas 
(u.v),n = J [(u.v) + (U’vqo] dQ (2.1) 

n 

II ~7 I/m = J@ - ~),a (2.2) 

Here the functions 

(U’V) 3 * (ui, j + Uj, i) (vi, j + uj, i) - e,‘I% 

(u - \qo 3 gf e,e, (eu = %, i9 07~ = ui, i) 

themselves satisfy all the axioms of the scalar product of two vector functions U and U 

at a point, except for the one axiom: u = 0 does not follow from the 

II u I10 = I43 = 0, 
.- 

II~l1o= Vb4ll = 0 

Closing the space c, in the norm (2.2), we obtain some Hilbert space 
let us consider a space Ca of vector functions v (5) (X ES (ti, x2, 

are twice continuously differentiable and satisfy the conditions 

conditions 

H,ra. 
zs) E &la) which 
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s vcm = 0, d [rXv]dQ=O 
n (2.3) 

Let us introduce the scalar product (u * v)zn and the norm 11 v jaa in Cs by means of 
(2.1) and (2.2). Closing the space C2 in the norm (1 v Ilrn we obtain some Hilbert space 
Hm. Considering (1.4) as an equation for the vector functions u = uixi, let us multiply 
it scalarly by the vector function v and let us integrate over the volume. Then taking 

account of the appropriate boundary conditions for the first boundary value problem 
when S, = S, S, = 0 in (1.5), we obtain 

3 
(u*v)rs-r = 2Go ( c FividQ + si 11 + cp (T, JoI (UT + QR) %ldQ + 

n 

+Cp(3ii,T,R)(u’V~d~-C ‘p (T, R) (U’V)o La-2 (2.4) 
i-l h 

It is assumed that the boundary condition of the first boundary value problem reduces 
to the homogeneous condition uJ, = 0. 

For the second boundary value problem when S, = 0, S, = Sin (1.5), we obtain 

3 
(u - ~qzn = -gy c 

3 

0 . 
FividQ + 2~o l c 

T,ividS + 
i-2 S 

+ 21 ~1 + rp (T, R)] (XT + @) (W-J + \ g (%, T, R) (u-v> &-J - 
n b 

- 
s 

cp (T, R) (u.v)JQ (2.5) 
61 

Here and henceforth, integration in the Lebesgue sense is kept in mind. 
We call the vector function u E H,a (u E Hm) satisfying the integral relation 

(2.4) (the relation (2.5)) for any vector function v E H’,Q (v E H& the generalized 
solution of the first (second) fundamental boundary value problem of thermoradiational 
plasticity. The generalized solutions of the problem satisfy the Lagrange principal of 
possible displacements; moreover, the generalized solution is classical if it is twice 

differentiable. 

Let us define the operators A and B in the spaces H,o and Hm respectively, by the 
relationships 

(AU*V),n = II, (U, V) (v E HIid (2.6) 

(Bu . v)zn = n, (U, v) (v = Ha) (2.7) 

Here nr (u, v) and IIs (u, v) are the right sides of relationships (2.4) and (2.5) respe- 
ctively. If the governing right sides of these equations are linear, bounded functionals 
in the vector-functions v, then according to the Riesz theorem, the operators A and B 
act in the spaces HIQ and Hmrespectively. In this case, seeking the generalized sol- 
ution of the first boundary value problem reduces to the operator equation 

Au = U in Hio (2.8) 

and of the second boundary value problem, to the equation 
BU = u in H,a (2.9) 

It is natural to consider that the recurrent integral relations obtained from (1.7) in the 
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same manner as (2.4). (2.5) from (1.4) will, taking account of the appropriate boundary 
conditions, determine the successive approximations of the generalized solutions of the 

appropriate fundamental boundary value problems. Taking account of (2.6). (2.7) we 
obtain that these recurrent relations for the first and second boundary value problems 
are, respectively 

u(n+i) = Au(n) in Hi. (2.10) 

UCn+l) = &Cn) in fJZn (2.11) 

3. Let us prove the following two theorems. 
Theorem 1. Let 

1) Fi (2) E L,, (a), p > 6/s; 
2) T (4, R (4 c Lz (52); 
3) g (a,, T, R) and cp (T, R) be Lebesgue measurable in Q as functions of the var- 

iable z = (zt, x2, zs) E Q 

4) for any T, R, ZltL1 and ZIU2 the following inequalities are valid: 

(3.1) 

I cp CT, R) I < B C 1 (3.2) 

Then the operator A acts in the space Hio,the solution of (2.8) exists in Hio and is 
the limit of the sequence (2.10) for any initial approximation u(a) E Hio. 

Theorem 2. Let 
1) all the conditions of Theorem 1 be satisfied; 

2) T,i be summable on the boundary S with degree r > 4/s; s satisfies the solvabi- 
lity conditions of the second boundary value problem of the theory of elasticity [4]; 

3) the principal vector and the principal moment of the system of external forces be 

zero. 
Then the operator B acts in Hso, the solution of (2.9) exists in Hzn and is the limit 

of the sequence (2.11) for any initial approximation U(O) E HzQ. 
We start the proof of the theorems simultaneously. Let us note that the third condition 

of Theorem 2 is necessary since it is necessary for the existence of a solution to the sec- 

ond boundary value problem in the space of vector functions v E H,, satisfying condi- 
tions (2.3), which exclude the displacement of a solid as an absolute solid. 

It has been shown in [3, 51 that the first condition of Theorem 1 and the second con- 
dition of Theorem 2 yield, respectively, the boundedness of the functionals 

n 

\ 
Fivid62 in Hio and HTn, 

c 
TviqdS in H,,. 

d 15 
The boundedness of the functional 

QU(V)S \9(3,, T, R)(u.v)dQ- \ 0 C+ (?‘, 11) (U.V),dQ 

d St 

in Hi, for any fixed u E Hi, (i = 1, 2) follows from the measurability and bounded - 
ness of the functions g and v~ 

Let us show the boundedness of the functional in the right side of (2.4) and (2.5) corr- 
esponding to the second and third members, in the spaces H,, and N,, We have 
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ii + cp 6”. WI W + qR) e&Q 1 (ri d (if B) \ W” + qRWQ 

(C=const>Oj i=i, 2) 

The existence of the integrals follows from the second and third conditions of Theorem 

1. Therefore, the right sides of (2.6). (2.7) are bounded linear functionals in the vec- 
tor functionsv E H,o (i = 1, Z).Hence, it follows that the operators A and B act in 
the spaces H,o and H,o respectively. 

For simplicity, we continue the proof for just Theorem 1. The proof of Theorem 2 

is later carried out analogously. 
let us introduce the bilinear functionals 

(U-V)* = s (U*V)dQ, (U*V),o = 
s 

(u*v)gdQ (3.3) 

n ha 

in the space Hro which satisfy all the scalar product axioms except one: u = 0 does not 
follow inH,&om the condition 

nu I/* z I/(u*u)o = 0 or Iu&or I/(u.u)~=O 

Evidently 

(u’v)Io = (UN, + (u*v),** II~llln=)/ll~Ila”+Il~I&n (3.4) 

let us consider the subset Hzt of the space HI*, whose elements u satisfy the condition 

II u II o. = u, i.e., H~={uEH,,:Ilu&,=O} (3.5) 

This latter condition means that 6, = 0 almost everywhere in 8. It can be shown that 
HFQt is a complete subspace of HIP, i. e. , a closed linear manifold of the space Hio,where 
the first bilinear functional in (3.3) satisfies all the scalar product axioms in HFQt and 
agrees with the scalar product (2.1) introduced in all of Rio. 

It can be shown analogously that the subset 

H$%{uE Hlp:#uVq=O} (3.6) 

of the space H,, is also a complete subspace and the second bilinear functional in (3.3) 
is a scalar product therein, which agrees with the scalar product (2.1) of the space HI,. 

It is seen that the subspaces Hz and H$’ are orthogonal and are maximal subspa- 

ces in which the functions (3.3) are, respectively, the scalar products. It can hence be 
shown that the direct sum of NY; and HfF yields the whole space Hro, i.e. , any vec- 
tor function u E H,, is uniquely representable as 

u = II’ + u” (u’ E H:“nt, u” E H;,Y) (3.7) 

Taking account of the above, (2.4) can be represented as 

3 ’ @‘.V’)* + (II” .V”jon = - 
230 s 

FividQ f 
c 

g(3,, T, R) (U'*V')dQ- q(T, R) (U"*V")&Q+ 

+iK" 

6-i 
c 
a3i 

(3.8) 

The relationship (3.8) for the desired u = u’ + u” should hold for any 7 -= V’ + v*, i.e. , 
for any pair V’ E Hri andv” E Hfz.Setting v” =O, we obtain 
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(u’*v’)~ = 
c 

g(3,, T, R)(U’*V’)dQ f & \ Fiv’idQ 
0 L 

n P 

for any u’. Assuming u’ = 0, we obtain for any V” 

(u”.v”),* = - s up (T, R) (U”*V”)dP f & Fivi”dO f 
0 

n 

(R.!)) 

(3.10) 

It is seen that from (2.4) we have gone over to an equivalent pair of relationships (3.9), 

(3. lo), i.e., the generalized solution of the first boundary value problem of thermora- 
diational plasticity exists if and only if each of the equations (3.9), (3.10) has a solut- 
ion in the appropriate subspace R$r or H,d;jv. 

Analogously, we can pass from (2.6) over to a pair of relationships for any v’ and any 
v” governing the operators A’ and A” in the subspaces H:“,t and H$V respectively 

(A’u’.v’)* = II,’ (u’, v’) (3.11) 

(.4”u”.v~)OP = II1 ti (u”, v”) (3.12) 

Here II,’ (u’, V’) and II,” (II”, v”)are the right sides of (3.9) and (3. lo), respectively. 
The operator A evidently acts in the space His if and only if the operators A’ and An 

act in the subspaces HFd and Hf:, where d’u’ f A”u” = Au. In this case, (2.8) in 
HIQ is equivalent to the pair of equations 

L4’U’ = U’ in Hint 

in ;;: 
(3.13) 

A’Un = U’ (3.14) 

and the convergence of the sequence (2.10) in H,, is equivalent to the pair of conver- 
gences of the sequences 

U’(n+i) = A’U’(TL) in Rzt 
(3.15) 

U”in+i) = ,4wu”(N in H:: 
(3.16) 

Hence, to prove the theorem it is sufficient to show the convergence of each of the 

sequences (3.15), (3.16) in the appropriate subspace. It is seen that (3.13) expresses 
the problem of thermoradiational plasticity for an incompressible material, and (3.15) 
determines the sequence of approximate generalized solutions of this .problem. The con- 
vergence of the Il’iushin method of elastic solutions is proved in [S] for incompressible 
materials in the case of using the so-called reduced shear modulus. In the case of the 
thermoradiational plasticity problem for an incompressible material, the convergence 
of the sequence (3.15) to the solution of (3.13) in the subspace H$’ can be proved an- 

alogously by using the condition (3.1) imposed on the function g (3,,, T, R). 
The convergence of the sequence (3.16) to the solution of (3.14) follows from the 

compressive property of the operator A” in the subspace Hf:, i.e., from the relation- 

ship 
(3.17l 

for any ul”, U~“E H,d,lv. Let us prove this property by using the constraint (3.2) imposed 
on the function P (T, R). 

From (3.12) we have 
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* 
((A"U1" - All%“). v n)OSr < I\ v (T, R) (@In - Uj”).V”)ll dQ < 

iz 
< P lbl” c - uLn Ilo. 11 v” \I0 dQ Q l?n 11 UI” - Uj” lion* 11 v” 1’0, 

b 

Setting v“ = A”ul” - A’h”, we arrive at (3.17). Theorem 1, and by analogy, Theorem 
2 also have been proved. 

Thus, the convergence of the method of homogeneous linear approximations (the me. 
thod of homogeneously elastic solutions) has been proved under the conditions of these 
theorems in application to the first and second fundamental boundary value problems 
of thermoradiational elasticity and plasticity. 

4, Let us examine the constraints (3.1) and (3.2) imposed on the change in the elas. 
tic or plastic properties of the material during radioactive exposure and heating (cool - 
ing). The constraint on the function g (a,, T, H) holds under the conditions 

Q, (0, T, A) = 0, a = const, Gsup = const, Gs,,p < 26, (4.1) 

These conditions mean that the curve of the dependence o, - 3,‘ at any point of the 
solid starts from the origin and lies, together with the directional vector of all its tan- 
gents, within an acute angle formed by two half-lines starting from the origin and the 

tangents 3G,,, and a of the slopes to the horizontal axis. The conditions (4.1) are sat- 
isfied in a broad range of variation of 7’ and K for an extensive class of plastic and el- 
astic-plastic materials. They are valid. say, for hardening elastic-plastic solids with 
a convex o, - a,, curve if Gsup E supo G (T, R) < 2G,. 

In the particular case of the thermoradiational elasticity problem when g (a,, Z’, 

fi) s g(T,@,condition (3.1) is equivalent to the condition ( g (T, R) 1 < h < 1, 
which means that the shear modulus in a solid under radioactive exposure and heating 

(cooling) should not change by more than he 10096. 
The constraint (3.2) imposed on the function cp (T, R) means that the relative cha- 

nge in the modulus of multilateral compression in a solid under exposure and heating 

should not exceed the constant p < 1 in absolute value. 
Conditions (3.1). (3.2) are only sufficient for the convergence of the method of horn. 

ogeneously linear solutions. It can be shown that these conditions can be weakened in 
some particular examples. 
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